Draw y + 14 = x ( x - 4 ) and label all points of intersection with axes.

To begin with, lets rewrite the equation in a way which is easier to understand by making y the subject and multiplying out the brackets:

y = x2 - 4x - 14

this looks significantly easier to understand and is just a quadratic and so will have a parabolic shape (U shape). Next, we need to find any points of intersections with axes as this will help us place our graph in a sketch. Setting x=0 we easily find that it crosses the y axis at -14. Since this equation is not easily factorised, it will be slightly more strenuous to determine if the it crosses the x-axis as we must use the quadratic formula. To save time we can find out if it intersects the x-axis by calculating the determinant:

det = b2 - 4ac

where a, b and c are, in this case, 1, -4 and -14. The value of the determinant tells us if the quadratic crosses the x-axis (has any solutions) and how many times (how many solutions)- if det > 0, two real solutions, if det = 0 there is one recurring solution and if det < 0 there are no solutions. In this case, det > 0 and therefore we know the parabola passes through the x-axis at two points, one on either side of the y axis- we have deduced the shape! Finally, to find the two points of intersection we just substitute in the a, b and c values into the quadratic formula.

TF
Answered by Thomas F. Maths tutor

3123 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many solutions are there of the equation a+b+c=12, where a,b,c are non-negative integers?


Use integration by parts to integrate ∫ xlnx dx


A curve has equation y = 20x - x^2 - 2x^3 . The curve has a stationary point at the point M where x = −2. Find the x- coordinate of the other stationary point of the curve


how do you do binomial expansion when the power is a negative


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences