How would go about finding the set of values of x for which x+4 > 4 / (x+1)?

Whenever you see a problem involving an inequality (greater than or less than sign) it is really important to pause for a second before you go breaking any rules of mathematics. Inequalities do not always behave the same way as equalities (equals sign), especially when negative numbers are involved. Take this simple inequality: 1 < 2. We know that this is true but if we multiply both sides by a negative number such as -1 we get the new statement -1 < -2 which isn't true at all. Since (x+1) could be negative (if x is less than -1) we can't multiply both sides by it however we can multiply both sides by (x+1)^2 since that will always be greater than or equal to zero. We do just that:

x+4 > 4 / (x+1) (x+4)(x+1)^2 > 4(x+1) [Since one of the (x-1)'s on the numerator of right-hand side cancels with the one on the denominator]

(x+4)(x^2 + 2x + 1) > 4x + 4 [We start expanding out the brackets...]

x(x^2 + 2x + 1) + 4(x^2 + 2x + 1) > 4x + 4

x^3 + 2x^2 + x + 4x^2 + 8x + 4 > 4x + 4

x^3 + 6x^2 + 5x > 0 [...and collect all terms on one side of the inequality]

It is really tempting to divide by x at this point since every term a multiple of x but beware. x could be zero and division by zero is never allowed so instead we solve the inequality by factorising it:

x(x^2 + 6x + 5) > 0

x(x+1)(x+5) > 0

We can now sketch a graph of x(x+1)(x+5) by using the fact that it evaluates to zero for x = 0, -1 and -5 and using the typical shape of a cubic equation where the coefficient of x^3 is positive (it's 1 in this case). We then shade in the regions that are greater than zero (above the x-axis) and turn these into the range of values of x that satisfy the inequality:

-5 < x < -1 or x > 0

Related Further Mathematics A Level answers

All answers ▸

'Find the first derivative, with respect to x, of arctan(1/x) for non-zero real x. Hence show that the value of arctan(x)+arctan(1/x) is constant for all non-zero x, explicitly stating this constant in your final answer.' How do I solve this?


solve 3sinh^2(2x) + 11sinh(2x) = 4 for x, giving your answer(s) in terms of the natural log.


Show that the matrix A is non-singular for all real values of a


Find the four roots of the equation z^4 = + 8(sqrt(3) + i), in the form z = r*e^(i*theta). Draw the roots on an argand diagram.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences