Give an example of a real-world system that would be described by a quadratic equation. Explain the significance of the two real roots, a repeated root, and undefined roots. Is there any significance to a positive or a negative answer in your example?

For a ball that has been thrown, it's height above the ground can be described by a quadratic equation of the time since it was thrown and gives a parabola.

The two real roots of the equation are the times when it is at a particular height above the ground, and there are two because the ball goes up and then goes down. A repeated root would give the time at which the ball is at the top of its arc, as this happens at only one time. Undefined roots are given when trying to find the time at which it reaches a height greater than the top of its arc (i.e. a height is will never reach).

In this example, positive roots describe heights on the arc after the ball was thrown (the actual, real-life scenario). Negative roots are points in time before the ball was thrown on the arc if it was extrapolated backwards behind the thrower.

Answered by James B. Maths tutor

3494 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is the point of intersection of two lines, and how would I find it?


Solve the simultaneous equations 2x - 3y = 24 (1) ; 6x + 2y = -5 (2)


How do you expand out and simply brackets, like the following: (x-3)(x+4)?


A right-angled triangle has an adjacent of (x + 1) and (x - 1). (a) Find the length of the hypotenuse in terms of x. (b) Explain why the triangle can't be an isoceles triangle.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences