There are n sweets in a bag, 6 of which are orange. If the probablility of eating 2 orange sweets from the bag, one after the other, is 1/3, show that n^2 - n - 90 = 0. State any assumptions made.

We are assuming that the sweets are selected at random. The question says that the sweets are eaten, so we are also assuming that they aren't put back into the bag. The total probability of selecting the two orange sweets is the product of the two individual probabilities of an orange sweet being taken each time a sweet is taken:

1, All of the sweets are in the bag
There are n total sweets in the bag, and of these there are 6 orange sweets. Thus the probability of selecting an orange sweet from this bag is 6/n.

2, There is one fewer orange sweets in the bag
There are now n-1 total sweets in the bag, and of these there are 5 orange sweets. Thus the probability of selecting an orange sweet from the bag now is 5/(n-1).

The total probability of selecting two orange sweets consecutively is therefore 6/n * 5/(n-1), which the question gives as being 1/3. Thus we are left with:

6/n * 5/(n-1) = 1/3     =>     n^2 - n - 90 = 0

Answered by James B. Maths tutor

3110 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

If we take a fair 6 sided die and colour 3 of the faces blue, 2 green and 1 red and then roll the die 300 times, work out and estimate the number of times it will land with the green side up.


How do I use the quadratic formula?


Emma wants to buy a radio, the full price is £80. In the shop, she is given a discount. A year later, she sells the radio for £78, giving her a profit of 30% of what she bought it for the year before. What discount did she receive? (4)


Solve the following simultaneous equation: 3x+y= 11 and 2x+y=8.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences