Differentiate the following: 3/2 x^(3/4) + 1/3 x^(-1/4)

In simple differentiation, we can use the fact that if y= x^n, dy/dx is equal to nx^(n-1). In other words, multiply the x term by the power, then decrease the power by 1. Here we have 2 terms so approach them seperately- firstly multiplying the x term - 3/2 multiplied by 3/4 gives 9/8, and 3/4 take away 1 is -1/4. This means the derivative is 9/8 x^(-1/4). Approach the second part in exactly the same way: 1/3 multiplied by -1/4 gives -1/12. -1/4 take away 1 gives -5/4. Therefore the overall answer to the question is 9/8x(-1/4) - 1/12x(-5/4)

AW
Answered by Alex W. Maths tutor

3561 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A straight line passes through the point (2,1) and has a gradient of 3. Find the co-ordinates of the points where this line intersects the axes


Find the area between the curves y = x^2 and y = 4x - x^2.


Write tan(3x) in terms of tan(x). Hence show that the roots of t^3 - 3t^2 - 3t + 1 = 0 are tan(pi/12), tan(5pi/12) and tan(3pi/4)


Integrate the following equation to find y: dy/dx = 3x^2 + 2x + 6


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning