Differentiate the following: 3/2 x^(3/4) + 1/3 x^(-1/4)

In simple differentiation, we can use the fact that if y= x^n, dy/dx is equal to nx^(n-1). In other words, multiply the x term by the power, then decrease the power by 1. Here we have 2 terms so approach them seperately- firstly multiplying the x term - 3/2 multiplied by 3/4 gives 9/8, and 3/4 take away 1 is -1/4. This means the derivative is 9/8 x^(-1/4). Approach the second part in exactly the same way: 1/3 multiplied by -1/4 gives -1/12. -1/4 take away 1 gives -5/4. Therefore the overall answer to the question is 9/8x(-1/4) - 1/12x(-5/4)

Answered by Alex W. Maths tutor

3070 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A cubic polynomial has the form p(z)=z^3+bz^2+cz+d, z is Complex and b, c, d are Real. Given that a solution of p(z)=0 is z1=3-2i and that p(-2)=0, find the values of b, c and d.


Differentiate y = 7(x)^2 + cos(x)sin(x)


integrate( x^3+4x^2+3)dx


Using the trigonometric identity (sinx)^2 + (cosx)^2 = 1, show that (secx)^2 = (tanx)^2 + 1 is also a trigonometric identity.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences