Prove that the lines 2y=3-x and y-2x=7 are pependicular.

We can find out whether lines are perpendicular by comparing their gradients. Each gradient should be the negative reciprocal of the other - for example, 3/2 and -2/3, or 4 and -1/4. (Writing the number as a fraction, then flipping the top and bottom of the fraction and reversing the +/- sign should give you the negative reciprocal.)

To work out the gradient of a straight line, we must rearrange the equation into the form y=mx+c, where m is the gradient and c represents a constant which is the y-intercept (the point at which the line crosses the y-axis).

Rearranging the first equation:

2y = 3 - x  -->   2y = -x + 3  -->  y= -1/2x + 3/2      The gradient, m, is -1/2

Rearranging the second:

y - 2x = 7  -->  y = 2x + 7     The gradient, m, is 2

Since 2 and -1/2 are negative reciprocals, the two lines must be perpendicular.

PM
Answered by Pranavi M. Maths tutor

3440 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What if my equation doesn't factorise?


Question: Factorise the expressions: 1. X^2 - 9 2. 2X^2 - 14X + 24


Find the co-ordinates of the turning point of the line with equation y = x^2 + ax + b that passes through (1, 47) and (2, 60)


The area of a square is 49cm^2. The perimeter of the square is equal to the circumference of a circle. Work out the radius of the circle. Give your answer to 1 decimal place.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning