Prove that the lines 2y=3-x and y-2x=7 are pependicular.

We can find out whether lines are perpendicular by comparing their gradients. Each gradient should be the negative reciprocal of the other - for example, 3/2 and -2/3, or 4 and -1/4. (Writing the number as a fraction, then flipping the top and bottom of the fraction and reversing the +/- sign should give you the negative reciprocal.)

To work out the gradient of a straight line, we must rearrange the equation into the form y=mx+c, where m is the gradient and c represents a constant which is the y-intercept (the point at which the line crosses the y-axis).

Rearranging the first equation:

2y = 3 - x  -->   2y = -x + 3  -->  y= -1/2x + 3/2      The gradient, m, is -1/2

Rearranging the second:

y - 2x = 7  -->  y = 2x + 7     The gradient, m, is 2

Since 2 and -1/2 are negative reciprocals, the two lines must be perpendicular.

Answered by Pranavi M. Maths tutor

2731 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: (1) 4x + y = 7 and (2) x - 3y = 5


Factorise the expression: 2x^2 + 17x + 21


solve the following equation: 7x + 8 = 2(6x -2)


Factorise the quadratic equation: x^2 + 5x + 6 = 0 and hence find the two solutions to the equation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences