Why do we get cos(x) when we differentiate sin(x)?

If we have an equation for a line, it follows a certain shape when put it on Cartesian axes. If we wish to find the value of the gradient of the graph at a certain coordinate, we can use differentiation to give us a numerical value. The easiest visualisation of differentiation is to look at the graphs y=sin(x) and y=cos(x). When we differentate sin, we get cos; as each cos point corresponds to the value of the gradient at each sin point. Where the gradient of sin is 0 (where the tangent to the curve is a horizontal line), for the same x value, the y value of a cos curve is also 0.

Answered by Sophie H. Maths tutor

4564 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.


Express 4sinx-cos(pi/2 - x) as a single trignometric function


What is the natural logarithm?


Find the Total Area between the curve x^3 -3x^2 +2x and the x-axis, when 0 ≤ x ≤ 2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences