solve 4^xe^(7x+5) = 21

ln((4^x)e^(7x+5)) = ln21; apply a natural log on both sides of the equation as an exponential containing e is involved 

ln4^x + ln(e^(7x+5)) = ln21; using logarithm rules you can seperate the single log on the LHS to form to logs as ln(ab) = lna + lnb

xln4 + 7x + 5 = ln21; using logarithm rules we can move down the power on the ln4e^x and lne^(7x+5) and since lne is 1 we are left with xln4+7x+5

x(ln4 + 7) = ln21 - 5; factor out the variable components and move all numbers with no variable to the same side of the equation

x = (ln21-5)/(ln4+7); divide through by the coefficient of x

Answered by Wahib N. Maths tutor

3023 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary points of y = (x-7)(x-3)^2.


How do I know which method of diffirentiation to use?


Write tan(3x) in terms of tan(x). Hence show that the roots of t^3 - 3t^2 - 3t + 1 = 0 are tan(pi/12), tan(5pi/12) and tan(3pi/4)


Integrate xsin(x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences