What is the integral of sin(3x) cos(5x)?

Using trig formulas we have sin(5x+3x)= sin(5x)cos(3x)+cos(5x)sin(3x) and sin(5x-3x)= sin(5x)cos(3x) - cos(5x)sin(3x). Hence, sin(5x+3x) - sin(5x-3x) = sin(8x)-sin(2x) = 2cos(5x)sin(3x). This implies that cos(5x)sin(3x)=(sin(8x)-sin(2x))/2 which we can easily integrated using the reverse chain-rule to get:

(-cos(8x)/8 + cos(2x)/2)/2 + C, simplifying further we get (4cos(2x) - cos(8x))/2 + C.

Answered by Morenikeji N. Maths tutor

5213 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Below is a question from the Edexcel Maths Core 1 textbook, Solve the equation x^2 + 8x + 10 = 0 using completing the square.


If, f(x) = 8x^3 + 1 / x^3 . Find f''(x).


How do I remember the coefficients of a Taylor expansion?


What is the difference between a scalar and vector quantity?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences