To solve this problem, you need to: rearrange the first equation (1) to express y in terms of x to obtain equation (3). Then, substitute this new equation into the quadratic one (the second equation from the problem (2)). Using the formula, expand the brackets (be careful with the negative sign!) and obtain the following quadratic equation: 3x2-20x+28=0. Find the discriminant (D=64), and using the formula find values for x1 and x2. After, using (3), find values for y1 and y2. x1=14/3, y1= - 13/3 and x2=2 and y2=1
full, step-by-step solution will be demonstrated during the lesson