Differentiate y = (sin(x))^2 (find dy/dx)

This a relatively simple question which requires the use of the chain rule to solve. First we set u = sin(x)  so we then have y = u. Next we perform do differentiations, one on u as a function of x and the other on y as a function of u: dy/du = 2u du/dx = cos(x) Next we note that dy/dx = (dy/du)(du/dx) note how the du terms cancel out, striclty speaking it doesn't quite work this way but for this level it's fine to think of it as such. So dy/dx = 2ucos(x). We finally substitue sin(x) in for u and we have dy/dx = 2*sin(x)*cos(x).

Answered by Tabraiz C. Maths tutor

12822 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you differentiate?


integrate (2x^4 - 4/sqrt(x) + 3)dx


How do I remember the common values of cosx, sinx and tanx?


A circle is given by the equation x^2+y^2-20x-24y+195=0. Draw this circle.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences