Find the complex number z such that 5iz+3z* +16 = 8i. Give your answer in the form a + bi, where a and b are real numbers.

Firstly, we note that z being a complex number can be expressed in the form z = a + bi. If we then take the complex conjugate of this expression, the real numbers remain the same (as they are their own c conjugates) but the c conjugate of i is -i, therefore z* = a - bi. We then insert these expressions into the given equation, so

5 i (a + bi)  + 3 (a - bi) + 16 = 8 i

We then expand the brackets and rearrange, remebering that i2 = -1, such that

5 i a - 5 b + 3 a - 3 b i + 16 = 8i.

We can then split the equation up into real and complex parts (i.e the terms that are not functions of i and are functions of i respectively) and treat each equation seperately, so we have

-5 b + 3 a + 16 = 0,       5a - 3b - 8 = 0

This is a simple simultaneous equation to solve, and we this find that

16b = 104, 16a = 88

so z is thus given by z = 11/2 + 13/2 i 

QED

Related Further Mathematics A Level answers

All answers ▸

Prove ∑r^3 = 1/4 n^2(n+1)^2


a) Show that d/dx(arcsin x) = 1/(√ (1-x²)). b) Hence, use a suitable trigonometric substitution to find ∫ (1/(√ (4-2x-x²))) dx.


How do you find the cube root of z = 1 + i?


How do I sketch accurate graphs for rational functions in a short amount of time? (I.e. A step by step guide of sketching graphs)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences