If x = cot(y) what is dy/dx?

Here we will use:

cot(x) = cos(x)/sin(x)

cosec2(x) = 1 + cot2(x)

Chain rule : dy/dt * dt/ dx = dy/ dx

Product rule : d/dx (uv) = udv/dx + v*du/dx

x = cot(y)= cos(y)/sin(y)

dx/dy = -cos(y)(cos(y)/sin(y)2) + 1/sin(y) (-sin(y))

         = -cos2(y)/sin2(y) -1 = - cos2(y)/sin2(y) -sin2(y)​ /sin2(y)

         = -(sin2(y)+ cos2(y))/sin2(y)​ = -cosec2(y)

cosec2(y) = 1 + cot2(y)

x = cot(y)

dx/dy = -(1 + x2)

dy/dx = -1/(1+x2)

Answered by Sahiti S. Maths tutor

24553 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Points A and B have coordinates (–2, 1) and (3, 4) respectively. Find the equation of the perpendicular bisector of AB and show that it may be written as 5x +3 y = 10.


How would I differentiate cos(2x)/x^1/2


Find the derivative of f(x)= ln(|sin(x)|). Given that f(x) has a value for all x, state why the modulus is required.


The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line l passes through both A and B. Find a vector equation for the line l.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences