How do you solve the simultaneous equations 3x + 4y = 5 and 2x – 3y = 9

We label each equation

3x + 4y = 5 (1)

2x – 3y = 9 (2)

We now want to get rid of one of the variables (x or y). Lets get rid of x:

We need (1) and (2) to have the same number of x's so we multiple (1) by 2 and (2) by 3 so they both have 6 x's

6x + 8y = 10 (1)*2

6x - 9y = 27 (2)*3

Now to get rid of the x's we take one of the equations from the other. It is easier to do (2)*3 -(1)*2

  6x - 9y = 27 (2)*3

- 6x + 8y = 10 (1)*2

                                   

     -17y = 17 

If we devide this equation by -17 we get

y = -1

We can plug this value of y into (1) to get

3x -4 = 5

add 4 to both sides of the equation

3x = 9

Divide by 3

x = 3

Now to check put x and y into (2)

6 - (-3) = 9 

As this is true, we have the solution

x = 3, y = -1

SS
Answered by Sahiti S. Maths tutor

41055 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is Pythagoras's theorem?


The first floor of an ancient japanese tower has 150 steps. Each floor above has 5 fewer floors than the previous. So, the second floor has 145 steps, the third 140 etc. How many floors does the tower have if the final floor has 30 steps leading to it.


Solve 2x^2 + 6x + 4 = 0 for x using the quadratic formula.


I can't figure out this question to do with VAT. VAT is charged at 20%. A TV is for sale for £650 inc. VAT in Good Electronics and the same TV is for sale £495 exc. VAT in Wright's Electricals, where is it cheaper?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning