Given that y = x^4 tan(2x), find dy/dx

Here we have a product of two functions - they are being multiplied together - so we need to use the product rule. The product rule is: if y = u·v, dy/dx = v·u' + u·v' (where f' stands for df/dx). u = x^4     du/dx = 4x^3 v = tan(2x)  dv/dx = 2·sec^2(2x) (using the chain rule - the derivative of the outside function multiplied by the derivative of the inside function). We can then put everything in its place in the product rule expression, giving: dy/dx = tan(2x)·(4x^3) + (x^4)·(2sec^2(2x)) We can neaten this up to give: dy/dx = 4(x^3)tan(2x) + 2(x^4)sec^2(2x)

Answered by Douglas B. Maths tutor

8901 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Mechanics (M1): Particle moving on a straight line with constant acceleration (Relationships of the 5 Key Formulae)


Given that y = 5x^4 + 3x^3 + 2x + 5, find dy/dx


Points P and Q are situated at coordinates (5,2) and (-7,8) respectively. Find a) The coordinates of the midpoint M of the line PQ [2 marks] b) The equation of the normal of the line PQ passing through the midpoint M [3 marks]


Differentiate the function f(x) = (x^2 - 1)^3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences