Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)

√75 = 5√3, therefore 

x√48 = √75 + 3√3

x√48 = 5√3 + 3√3

x(√16 x √3) = 5√3 + 3√3

4x√3 = 5√3 + 3√3

4x√3 = (5 + 3)√3

4x√3 = 8√3

x√3 = 2√3

x = 2

Answered by Alex T. Maths tutor

7526 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Use the substitution u = cos 2x to find ∫(cos^2*(2x) *sin3 (2x)) dx


Use Simpson's rule with 5 ordinates (4 strips) to find an approximation to "integral between 1 and 3 of" 1/sqrt(1+x^3) dx giving your answer to three significant figures.


Use integration by parts to find the integral of x sin(3x)


Write cosx - 3sinx in the form Rcos(x + a)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences