Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)

√75 = 5√3, therefore 

x√48 = √75 + 3√3

x√48 = 5√3 + 3√3

x(√16 x √3) = 5√3 + 3√3

4x√3 = 5√3 + 3√3

4x√3 = (5 + 3)√3

4x√3 = 8√3

x√3 = 2√3

x = 2

AT
Answered by Alex T. Maths tutor

8190 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The mass of a substance is increasing exponentially. Initially its mass is 37.5g, 5 months later its mass is 52g. What is its mass 9 months after the initial value to 2 d.p?


Show that x^2 - 8x +17 <0 for all real values of x


OCR C2 2015 Question 8: (a) Use logarithms to solve the equation 2^(n-3) = 18,000 , giving your answer correct to 3 significant figures. (b) Solve the simultaneous equations log2(x) + log2(y) = 8 & log2(x^2/y) = 7.


d/dx[sin(x) + cos(x)]


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning