Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)

√75 = 5√3, therefore 

x√48 = √75 + 3√3

x√48 = 5√3 + 3√3

x(√16 x √3) = 5√3 + 3√3

4x√3 = 5√3 + 3√3

4x√3 = (5 + 3)√3

4x√3 = 8√3

x√3 = 2√3

x = 2

Answered by Alex T. Maths tutor

7145 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

By consdering partial fractions find the integral of (1-x)/(5x-6-x^2) between x = 1 and x = 0, give your answer in an exact form.


Express the equation cosecθ(3 cos 2θ+7)+11=0 in the form asin^2(θ) + bsin(θ) + c = 0, where a, b and c are constants.


The curve C has equation: 2(x^2)y + 2x + 4y – cos(pi*y) = 17. Use implicit differentiation to find dy/dx in terms of x and y.


A car is accelerating at 2 ms^-2 along a horizontal road. It passes a point A with a velocity of 10 ms^-1 and later a point B, where AB = 50m. FInd the velocity of the car as it passes through B.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences