1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.

To differentiate use formula.

multiply factor by power then minus one from power (where x is invloved)

dy/dx = 12x^3 - 24x^2

d^2y/dx^2 = 36x^2 - 48x (this is just a further differentiation)

b) to find stationary point, put value of x into gradient equation (dy/dx) and it should equal to zero (hence stationary)

c) put value of x into second derivative. answer = 48 = positive hence the nature of this point is positive

EI
Answered by Elysa I. Maths tutor

15257 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the factors of x^3−7x−6


a circle c has the equation x^2 + y^2 -4x + 10y = k. find the center of te circle


what is the equation of the normal line to the curve y=x^2-4x+3 at the point (5,8)?


A block mass m lies on an incline rough plane, with coefficient of friction µ. The angle of the block is increased slowly, calculate the maximum angle of the slope that can be achieved without the block slipping.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning