1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.

To differentiate use formula.

multiply factor by power then minus one from power (where x is invloved)

dy/dx = 12x^3 - 24x^2

d^2y/dx^2 = 36x^2 - 48x (this is just a further differentiation)

b) to find stationary point, put value of x into gradient equation (dy/dx) and it should equal to zero (hence stationary)

c) put value of x into second derivative. answer = 48 = positive hence the nature of this point is positive

Answered by Elysa I. Maths tutor

13977 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (3x^2-x-2)/(x^2-1)


Locate the position and the nature of any turning points in the function: 2x^3 - 9x^2 +12x


Integrate cos^2x + cosx + sin^2x + 3 with respect to x


Differentiate(dx) xy+4y-13


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences