1. The curve C has equation y = 3x^4 – 8x^3 – 3 (a) Find (i) d d y x (ii) d d 2 y x 2 (3) (b) Verify that C has a stationary point when x = 2 (2) (c) Determine the nature of this stationary point, giving a reason for your answer.

To differentiate use formula.

multiply factor by power then minus one from power (where x is invloved)

dy/dx = 12x^3 - 24x^2

d^2y/dx^2 = 36x^2 - 48x (this is just a further differentiation)

b) to find stationary point, put value of x into gradient equation (dy/dx) and it should equal to zero (hence stationary)

c) put value of x into second derivative. answer = 48 = positive hence the nature of this point is positive

Answered by Elysa I. Maths tutor

14382 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (3x^2-x-2)/(x^2-1)


A school has 1200 pupils. 575 of these pupils are girls. 2/5 of the girls like sports. 3/5 of the boys like sport. Work out the total number of pupils in the school who like sport.


How do i use chain rule to calculate the derivative dy/dx of a curve given by 2 "parametric equations": x=(t-1)^3, y=3t-8/t^2


Imagine a sector of a circle called AOB. With center O and radius rcm. The angle AOB is R in radians. The area of the sector is 11cm². Given the perimeter of the sector is 4 time the length of the arc AB. Find r.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences