Solve the simultaneous equations: 3x+7y=18 and x+2y=5

  • To help us to see what we need to do in this question, I would always line the equations up one above the other, and label them (1) and (2). Here we'll say that (1) is 3x + 7y =18 and (2) is x+ 2y =5 - To solve this problem, we first need to eliminate either the x or the y values so that we can solve for just one of them initially. To do this, we need the same amount of x's in both equations, or the same amount of y's. - This can be done many ways, but one of the simplest ways would be to multiply equation (2) by 3. The important thing to remember is to multiply the whole equation by the same amount, not just the x value. (2) x 3 is 3x + 6y = 15 - Now to remove the x's from our problem to solve for y, we can do (1) - (2). 3x + 7y =28 - 3x + 6y =15 - This gives us a value of y =3 - Now that we have a value for y, we can put this into one of our original equations (it doesn't matter which equation you use). - y =3 into (1) is 3x + 7(3) = 18..... 3x+21=18 - Rearrange the equation to find your value for x. 3x = -3 and so x = -1 - To check your answer, try put your values for x and y into equation (2) and see if it equals the correct number.
Answered by Harriet C. Maths tutor

5912 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Sam works for £14 per hour. When Sam works more than 8 hours a day, he is paid overtime for each hour he works more than 8 hours at 1½ times his normal rate of pay. Sam worked for 12 hours. Work out the total amount of money Sam earned.


How can you solve an equation with unknowns in the denominators?


Solve x^2+2x-4, leaving your answer in the simplist surd form. (4marks)


What is cuberoot(64x1000)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences