Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)

sin(x)2 + cos(x)2 = 1

Dividing by cos(x)2 gives:

tan(x)2 + 1 = sec(x)2 

Which rearranges as:

sec(x)2 - tan(x)2 = 1 as required.

tan(x)2 + cos(x)2 = 1

sec(x)2 - 1 + cos(x)2 = 1

sec(x)2 + cos(x)2 = 2

1 + cos(x)4 = 2cos(x)2

(cos(x)2 -1)2 = 0

cos(x)2 = 1

cos(x) = 1

x = 0, 2π

Answered by Alistair R. Maths tutor

3040 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle with centre C has equation x^2 + y^2 + 2x + 6y - 40 = 0 . Express this equation in the form (x - a)^2 + (x - b)^2 = r^2. Find the co-ordinates of C and the radius of the circle.


Find the area under the curve y = (4x^3) + (9x^2) - 2x + 7 between x=0 and x=2


Which A-level modules did you take?


sin(x)/(cos(x)+1) + cos(x)/(sin(x)+1) = 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences