Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)

sin(x)2 + cos(x)2 = 1

Dividing by cos(x)2 gives:

tan(x)2 + 1 = sec(x)2 

Which rearranges as:

sec(x)2 - tan(x)2 = 1 as required.

tan(x)2 + cos(x)2 = 1

sec(x)2 - 1 + cos(x)2 = 1

sec(x)2 + cos(x)2 = 2

1 + cos(x)4 = 2cos(x)2

(cos(x)2 -1)2 = 0

cos(x)2 = 1

cos(x) = 1

x = 0, 2π

Answered by Alistair R. Maths tutor

3243 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(GCSE) A rectangle has the following characteristics: its length is (2x + 5), its width is (3x - 2). The perimeter of the rectangle is 46 cm. What is the value of x?


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


Solve the equation x=4-|2x+1|


How do you find a turning point of a function using differentiation?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences