Given that sin(x)^2 + cos(x)^2 = 1, show that sec(x)^2 - tan(x)^2 = 1 (2 marks). Hence solve for x: tan(x)^2 + cos(x) = 1, x ≠ (2n + 1)π and -2π < x =< 2π(3 marks)

sin(x)2 + cos(x)2 = 1

Dividing by cos(x)2 gives:

tan(x)2 + 1 = sec(x)2 

Which rearranges as:

sec(x)2 - tan(x)2 = 1 as required.

tan(x)2 + cos(x)2 = 1

sec(x)2 - 1 + cos(x)2 = 1

sec(x)2 + cos(x)2 = 2

1 + cos(x)4 = 2cos(x)2

(cos(x)2 -1)2 = 0

cos(x)2 = 1

cos(x) = 1

x = 0, 2π

Answered by Alistair R. Maths tutor

3245 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the remainder when you divide 2x^3+7x^2-4x+7 by x^2+2x-1?


A curve is described by the equation x^3 - 4y^2 = 12xy. a) Find the points on the curve where x = -8. b) Find the gradient at these points.


Why does adding a constant to a function's input (as in f(x-a)) shift the plot of the function along the x-axis?


How would I go about solving 3(x-2) = x+7?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences