A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.

dy/dx = 9x^2 + 2ax + b

x = 2, dy/dx = 9(2)^2 + 2a(2) + b = 36 + 4a + b

x = 1, dy/dx = 9(1)^2 + 2a(1) + b = 9 + 2a + b

36 + 4a + b = 2(9 + 2a + b)

b = 18

x = -1, dy/dx = 0 = 9(-1)^2 + 2a(-1) + 18

9 - 2a + 18 = 0

a = 13.5

Related Further Mathematics GCSE answers

All answers ▸

Let y = (4x^2 + 3)^4. Find dy/dx.


The curve C is given by the equation x^4 + x^2y + y^2 = 13. Find the value of dy/dx at the point (-1,3). (A-level)


What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences