A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.

dy/dx = 9x^2 + 2ax + b

x = 2, dy/dx = 9(2)^2 + 2a(2) + b = 36 + 4a + b

x = 1, dy/dx = 9(1)^2 + 2a(1) + b = 9 + 2a + b

36 + 4a + b = 2(9 + 2a + b)

b = 18

x = -1, dy/dx = 0 = 9(-1)^2 + 2a(-1) + 18

9 - 2a + 18 = 0

a = 13.5

AR
Answered by Alistair R. Further Mathematics tutor

2353 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

How can I show that the lines between sets of points are perpendicular?


What is the distance between two points with x-coordinates 4 and 8 on the straight line with the equation y=(3/4)x-2


If y=(x^2)*(x-10), work out dy/dx


The circle c has equation x^2+ y ^2=1 . The line l has gradient 3 and intercepts the y axis at the point (0, 1). c and l intersect at two points. Find the co-ordinates of these points.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning