A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.

dy/dx = 9x^2 + 2ax + b

x = 2, dy/dx = 9(2)^2 + 2a(2) + b = 36 + 4a + b

x = 1, dy/dx = 9(1)^2 + 2a(1) + b = 9 + 2a + b

36 + 4a + b = 2(9 + 2a + b)

b = 18

x = -1, dy/dx = 0 = 9(-1)^2 + 2a(-1) + 18

9 - 2a + 18 = 0

a = 13.5

AR
Answered by Alistair R. Further Mathematics tutor

2106 Views

See similar Further Mathematics GCSE tutors

Related Further Mathematics GCSE answers

All answers ▸

f(x) = 2x^3+6x^2-18x+1. For which values of x is f(x) an increasing function?


The coefficient of the x^3 term in the expansion of (3x + a)^4 is 216. Find the value of a.


Prove that sin(x)^2 - 5cos(x)^2 = 6sin(x)^2 - 5


Solve the simultaneous equations xy=2 and y=3x+5.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences