Find the gradient of the exponential curve y(x)=(9e^(7x))/(12e^(2x)) at x=2/5

According to the quotient rule, when y(x)=f(x)/g(x), y'(x)=(f'(x)g(x)-g'(x)f(x))/g(x)2

f(x)=9e7x f'(x)=63e7x, g(x)=12e2x g'(x)=24e2x

y'(x)=(63e7x.12e2x-24e2x.9e7x)/(12e2x)2

y'(x)=(756e9x-216e9x)/144e4x=540e9x/144e4x=15e5x/4

At x=2/5, y'(x)=15e2/4=27.709

Answered by Connor M. Maths tutor

2774 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of the following equation: y = cos^2(x)


Determine the tangent to the curve y = sin^2(x)/x at the point, x = pi/2. Leave your answer in the form ax+by+c=0


What is the derivative of y = (3x-2)^1/2 ?


What is the sum of the geometric series 1 + 1/3 + 1/9 + 1/27 ...


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences