Integrate ⌠( xcos^2(x))dx

We must first use trigonometric identities to simplify cos2(x). We can use the formula cos(A+B) = cos(A)cos(B) - sin(A)sin(B) , where A=x and B=x, so that we get cos(2x) = cos2(x) - sin2(x) = 2cos2(x) - 1. Rearranging this we find that cos2(x) = 1/2 + (cos(2x))/2 This gives us (⌠(x+xcos(2x))dx)/2 = 1/2(⌠( x)dx + ⌠( xcos(2x))dx) = x2 /4 + ⌠( xcos(2x))dx) /2 We can then use the integration by parts formula, ⌠(udv)dx = uv - f(vdu)dx , where u=x and dv=cos(2x), so that we get x2 /4 + ⌠( xcos(2x))dx) /2 = x2 /4 + xsin(2x)/4 - ⌠(sin(2x))dx)/4 = x2 /4 + xsin(2x)/4 + cos(2x)/8 Hence,the final answer is x2 /4 + xsin(2x)/4 + cos(2x)/8 + c

Answered by Daniel A. Maths tutor

9534 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

what is the difference between remainder and factor theorem?


How do we differentiate y=a^x when 'a' is an non zero real number


Find the exact solutions, in their simplest form, to the equations : a) 2ln(2x + 1)-4=0 b)7^(x)e^(4x)=e^5


Consider the function F(x)=17(x^4)+13(x^3)+12(x^2)+7x+2. A) differentiate F(x) B)What is the gradient at the point (2,440)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences