Integrate ⌠( xcos^2(x))dx

We must first use trigonometric identities to simplify cos2(x). We can use the formula cos(A+B) = cos(A)cos(B) - sin(A)sin(B) , where A=x and B=x, so that we get cos(2x) = cos2(x) - sin2(x) = 2cos2(x) - 1. Rearranging this we find that cos2(x) = 1/2 + (cos(2x))/2 This gives us (⌠(x+xcos(2x))dx)/2 = 1/2(⌠( x)dx + ⌠( xcos(2x))dx) = x2 /4 + ⌠( xcos(2x))dx) /2 We can then use the integration by parts formula, ⌠(udv)dx = uv - f(vdu)dx , where u=x and dv=cos(2x), so that we get x2 /4 + ⌠( xcos(2x))dx) /2 = x2 /4 + xsin(2x)/4 - ⌠(sin(2x))dx)/4 = x2 /4 + xsin(2x)/4 + cos(2x)/8 Hence,the final answer is x2 /4 + xsin(2x)/4 + cos(2x)/8 + c

Answered by Daniel A. Maths tutor

9874 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The graphs of functions f(x)=e^x and h(x)=e^(-.5x), where x is a real number and 0<x<1 ,lie on a plane. Draw these functions and find the area they and the line x=0.6 enclose using integration correct to 3 decimal places


Find the antiderivative of the function f(x)=(6^x)+1


Given that the curve y = 3x^2 + 6x^1/3 + (2x^3)/3x^1, find an expression for the gradient of the curve.


The function f(x) is defined by f(x) = 1 + 2 sin (3x), − π/ 6 ≤ x ≤ π/ 6 . You are given that this function has an inverse, f^ −1 (x). Find f^ −1 (x) and its domain


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences