The number of uniform spherical balls that can be produced from a given mass of lead is inversely proportional to the radius of the ball cubed. If 2744 balls can be made when the radius is 1mm, how many balls can be made when the radius is 1.4mm ?

So first we need to write down the proportionality relationship the question states. If we let n be the number of balls and r be the radius of the balls we can say n (proportional symbol) 1/r3. We can turn this into an equation by replacing the proportion symbol with an "=" and multiplying the rhs by a constant which we will call k. So we have n = k/r3. Putting in the numbers given in this question we can solve for k :

k = 2744*(1mm)3 = 2744mm3

Now we know what k is we can answer the question, we substitute the value for k and r = 1.4mm into the equation and solve :

n = 2744mm3/(1.4mm)3 = 1000. Note how the units cancel out which is a good sign we've done things correctly. 

So with a radious of 1.4mm we can make 1000 balls.

Answered by Tabraiz C. Maths tutor

2961 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

S is a geometric sequence. a) Given that (√x - 1), 1, and (√x + 1) are the first three terms of S, find the value of x. b) Show that the 5th term of S is 7 + 5√2


solve the simultaneous equations 3x+7y=18 and 7x+9y=8


c is a positive integer. Prove that (6c^3+30c) / ( 3c^2 +15) is an even number.


Solve the quadratic equation: x^2 - 2x - 15 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences