Solve the equation 2ln2x = 1 + ln3. Give your answer correct to 2dp.

LHS: because alnx = lnxa, 2ln2x = ln(2x)2 = ln4x2

Now, because ln and e are inverse functions, we take both sides to the power of e. Therefore:

eln4x^2 = e1 + ln3

4x2 = e1 + ln3

x2 = (e1 + ln3) / 4

x = sq root of [(e1 + ln3) / 4]

entering into the calculator, this gives us +/- 1.43

Answered by Shiv S. Maths tutor

4035 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve is defined with the following parameters; x = 3 - 4t , y = 1 + 2/t . Find dy/dx in terms of x and y.


Given that y= x^(-3/2) + (1/2)x^4 + 2, Find: (a) the integral of y (b) the second differential of y


Differentiate y=x/sin(x)


Given that f(x)= (4/x) - 3x + 2 find i) f'(x) and ii) f''(1/2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences