Solve the equation 2ln2x = 1 + ln3. Give your answer correct to 2dp.

LHS: because alnx = lnxa, 2ln2x = ln(2x)2 = ln4x2

Now, because ln and e are inverse functions, we take both sides to the power of e. Therefore:

eln4x^2 = e1 + ln3

4x2 = e1 + ln3

x2 = (e1 + ln3) / 4

x = sq root of [(e1 + ln3) / 4]

entering into the calculator, this gives us +/- 1.43

SS
Answered by Shiv S. Maths tutor

4757 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you use the chain rule?


Given that y = x^2 +2x + 3, find dy/dx.


Form the differential equation representing the family of curves x = my , where, m is arbitrary constant.


f (x) = (x^2 + 4)(x^2 + 8x + 25). Find the roots of f (x) = 0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning