A stationary particle explodes into 3: A (to the left), B and C (both to the right). B has mass m and speed 3v. C has mass 2m and speed v. A has speed 2v. What is the mass of A in terms of m?

The key to solving this is remembering that momentum is conserved. The large, initial particle has no speed so its momentum is zero. Therefore, if we add together the momenta of the final particles we also get zero. So we can write:

pA + p+ p= 0

And we can rearrange for pA, which is what we want to find:

pA = -pB - pC

We know that momentum is calculated p = mv and we are given the masses and velocities of B and C, and the velocity of A (we remember that A is travelling in the opposite direction so has a negative v):

M* (-2v) = -3mv - 2mv

We rearrange for the mass of A, MA, and find that:

MA = 2.5 m

SP
Answered by Seth P. Physics tutor

2273 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

What is the difference between nuclear fusion and nuclear fission?


State what is meant by resonance and provide some examples where it is crucial.


If photons of wavelength 0.1nm are incident on a 2m x 2m Solar Panel at a rate of 2.51x10^15s^-1, calculate the intensity, I, of the photons on the Solar Panel.


Two identical uniform spheres each of radius R are placed in contact. The gravitational force between them is F. They are then separated until the force between them is one ninth of the magnitude. What is the distance between the surfaces of the spheres?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning