Integrate x*ln(x)

Let u = ln(x) and dv/dx = x

Thus du/dx = 1/x and v = x2/2

Using the formula:

Integral of udv/dx = uv - Integral of v*du/dx

This becomes: Integral of x*ln(x) = (x2ln(x))/2 - Integral of x/2

Completing the integral on the RHS gives the answer to the question: (x2ln(x))/2 - x2/4

AG
Answered by Anindita G. Maths tutor

4491 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given the function y = x^5 + x^3/2 + x + 7 Express the following in their simplest forms: i) dy/dx ii) ∫ y dx


What is the best way to prove trig identities?


Differentiate y = 5x^3 + 7x + 3 with respect to x


Given that y = x^4 + x^(1/3) + 3, find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning