Integrate x*ln(x)

Let u = ln(x) and dv/dx = x

Thus du/dx = 1/x and v = x2/2

Using the formula:

Integral of udv/dx = uv - Integral of v*du/dx

This becomes: Integral of x*ln(x) = (x2ln(x))/2 - Integral of x/2

Completing the integral on the RHS gives the answer to the question: (x2ln(x))/2 - x2/4

Answered by Anindita G. Maths tutor

3847 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate exp(2x)cos(8x) by parts


Find the derivative of the equation y = x*ln(x)


Prove the trigonometric identity tan^2(x)+1=sec^2(x)


Given that y = x^4 + x^(1/3) + 3, find dy/dx


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences