Integrate x*ln(x)

Let u = ln(x) and dv/dx = x

Thus du/dx = 1/x and v = x2/2

Using the formula:

Integral of udv/dx = uv - Integral of v*du/dx

This becomes: Integral of x*ln(x) = (x2ln(x))/2 - Integral of x/2

Completing the integral on the RHS gives the answer to the question: (x2ln(x))/2 - x2/4

Answered by Anindita G. Maths tutor

3723 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How come x^2 = 25 has 2 solutions but x=root(25) only has one? Aren't they the same thing?


Solve int(ln(x)dx)


Solve 2^(3x-1) = 3


Integration of ln(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences