Integrate the following expression with respect to x by parts: (2*x)*sin(x)

The integration by parts formula: S:udv/dx = uv -  S:v*du/dx, where S: means "Integral of with respect to x" 

Let 2*x be u and sin(x) be dv/dx

So du/dx =2 and v= -cos(x)

So S:(2x)sin(x) = (2x)(-cos(x)) - S:-cos(x)*2

= -2xcos(x) + 2*sin(x)

= 2sin(x) - 2x*cos(x) +c

DP
Answered by David P. Maths tutor

3184 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I solve x^2 > 6 - x


A curve has equation 2(x^2)+3x+10. What is the gradient of the curve at x=3


y = 2x^3 + 15x^2 + 24x + 10 Find the stationary points on this curve and determine their nature


Find the stationary points of the curve f(x) =x^3 - 6x^2 + 9x + 1


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning