Integrate the following expression with respect to x by parts: (2*x)*sin(x)

The integration by parts formula: S:udv/dx = uv -  S:v*du/dx, where S: means "Integral of with respect to x" 

Let 2*x be u and sin(x) be dv/dx

So du/dx =2 and v= -cos(x)

So S:(2x)sin(x) = (2x)(-cos(x)) - S:-cos(x)*2

= -2xcos(x) + 2*sin(x)

= 2sin(x) - 2x*cos(x) +c

DP
Answered by David P. Maths tutor

3271 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the derivative with respect to x, of 5cos(x)+ 4sin(x)


Show (2-3i)^3 can be expressed in the form a+bi where a and b are negative integers.


Differentiate y= 8x^2 +4x +5


Let w, z be complex numbers. Show that |wz|=|w||z|, and using the fact that x=|x|e^{arg(x)i}, show further that arg(wz)=arg(w)+arg(z) where |.| is the absolute value and arg(.) is the angle (in polar coordinates). Hence, find all solutions to x^n=1 .


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning