Integrate the following expression with respect to x by parts: (2*x)*sin(x)

The integration by parts formula: S:udv/dx = uv -  S:v*du/dx, where S: means "Integral of with respect to x" 

Let 2*x be u and sin(x) be dv/dx

So du/dx =2 and v= -cos(x)

So S:(2x)sin(x) = (2x)(-cos(x)) - S:-cos(x)*2

= -2xcos(x) + 2*sin(x)

= 2sin(x) - 2x*cos(x) +c

Answered by David P. Maths tutor

2879 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A circle has equation: (x - 2)^2 + (y - 2)^2 = 16. It intersects the y-axis (y > 0) at point P and the x-axis (x < 0) at point Q. Find the equation of the line connecting P and Q and of the line perpendicular to PQ passing through the circle's centre.


What is the integral of x^2 sin(x) between the limits 0 and π/2


Given that y = 16x + x^(-1), find the two values of x for which dy/dx = 0


Differentiate xcos(x) with respect to x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences