Solve for -pi < x < pi: tanx = 4cotx + 3

tanx = 4cotx + 3  - Multiply through by tan to form a quadratic. tan^2x = 4 + 3tanx - Simplify by allowing y to equal tanx. y^2 = 4 + 3y - Rearange to standard quadratic form. y^2 - 3y -4 = 0 - Factorise. (y - 4)(y + 1) = 0 Therefore y = 4 and y = -1 Substitute y=tanx to solve for x: y = 4 tanx = 4 x = tan-14 x= 1.326 (3d.p.) tanx = -1 x = tan-1 -1 x = -pi/4

ZL
Answered by Zak L. Maths tutor

6310 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Show that the curve y =f(x) has exactly two turning points, where f(x)= x^3 - 3x^2 - 24x - 28


Find the equation of the line tangential to the function f(x) = x^2+ 1/ (x+3) + 1/(x^4) at x =2


Solve the simultaneous equations: x^2 + 8x + y^2; x - y = 10.


For rectangles of area 100 m^2 what is the perimeter of the rectangle with the smallest perimeter?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning