Solve for -pi < x < pi: tanx = 4cotx + 3

tanx = 4cotx + 3  - Multiply through by tan to form a quadratic. tan^2x = 4 + 3tanx - Simplify by allowing y to equal tanx. y^2 = 4 + 3y - Rearange to standard quadratic form. y^2 - 3y -4 = 0 - Factorise. (y - 4)(y + 1) = 0 Therefore y = 4 and y = -1 Substitute y=tanx to solve for x: y = 4 tanx = 4 x = tan-14 x= 1.326 (3d.p.) tanx = -1 x = tan-1 -1 x = -pi/4

Answered by Zak L. Maths tutor

5473 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How would I find a the tangent of a point on a line?


How to differentiate a bracket raised to a power i.e. chain rule


Express 9^(3x + 1) in the form 3^y , giving y in the form ax + b, where a and b are constants.


If f(x)= ( ((x^2) +4)(x-3))/2x find f'(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences