How do I integrate by parts?

When we integrate by parts, we begin by setting the first term to equal some variable U, the second term in the integral we set to be dv/dx. Then we differentiate the U to obtain du/dx and integrate dv/dx to obtain V. The next stage is to put in the values into the following formula: I = uv - ∫(v.du/dx) dx. Finally we integrate V . du/dx and then simplify the expression to obtain the solution to the integral. For an indefinite integral we add the constant (+C) and for a definite integral we have to sub in the limits accordingly. For example: ∫ (xlnx) dx        (1)  u=lnx     (2)  dv/dx=x    (3)  du/dx=1/x   (4)  v= ∫(dv/dx) dx = ∫ x dx = 0.5x^2 using the formula I = uv - ∫ (du/dx . v) dx we obtain ∫ (xlnx) dx = 0.5x^2 (lnx) - ∫ (1/x . 0.5x^2) dx = 0.5x^2 (lnx) - 0.5 ∫ x dx = 0.5x^2lnx - 0.25x^2 +C

LM
Answered by Louis M. Maths tutor

4278 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the velocity of the line from vector A(3i+2j+5k) to vector B(10i-3j+2k)?


Differentiate y=x*ln(x^3-5)


Prove or disprove the following statement: ‘No cube of an integer has 2 as its units digit.’


A football is kicked at 30 m/s at an angle of 20° to the horizontal. It travels towards the goal which is 25 m away. The crossbar of the goal is 2.44 m tall. (A) Does the ball go into the goal, hit the crossbar exactly, or go over the top?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning