Find the indefinite integral of Ln(x)

This question requires integration by parts, using the formula:

Integral(u dv) =  u v - integral(v du) 

This is applied to find the integral of Ln(x) by writing Ln(x) as 1 * Ln(x), u is then Ln(x) and dv is 1.

Differentiating u=Ln(x) gives you du=1/x. Integrating dv=1 gives you v=x.

Then substituting into formula gives you: Integral(Ln(x)) = xLn(x) - Integral(x*1/x) = xLn(x) - Integral(1)

Therefore Intergral(Ln(x)) = xLn(x) - x + C, Where C is the integration constant

Answered by Tutor66529 D. Maths tutor

19458 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do I find where the stationary points of a function are?


y = 2t^2, and x = 3t^3 - 2. Find dy/dx in terms of t.


How would you use the following expression to approximate [(4-5x)/(1+2x)(2-x)] when x=5 (A2 pure)


Find the first derivative of f(x) = tan(x).


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences