Find the indefinite integral of Ln(x)

This question requires integration by parts, using the formula:

Integral(u dv) =  u v - integral(v du) 

This is applied to find the integral of Ln(x) by writing Ln(x) as 1 * Ln(x), u is then Ln(x) and dv is 1.

Differentiating u=Ln(x) gives you du=1/x. Integrating dv=1 gives you v=x.

Then substituting into formula gives you: Integral(Ln(x)) = xLn(x) - Integral(x*1/x) = xLn(x) - Integral(1)

Therefore Intergral(Ln(x)) = xLn(x) - x + C, Where C is the integration constant

TD
Answered by Tutor66529 D. Maths tutor

21870 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the chain rule?


A curve has equation 3x^4/3-16y^3/4=32. By differentiating implicitly find dy/dx in terms of x and y. Hence find the gradient of the curve at the point (8,1).


Describe the set of transformations that will transformthe curve y=x^ to the curve y=x^2 + 4x - 1


Find the coordinates of the stationary point on the curve y=2x^2+3x+4=0


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning