Find the gradient of the curve y=sin(x^2) + e^(x) at the point x= sqrt(pi)

y=sin(x2) + ex Firstly we need to differentiate. dy/dx = 2xcos(x2) + ex using the chain rule Notice the gradient at x = sqrt(pi) is found when we sub x into dy/dx Hence dy/dx = 2*sqrt(pi)cos( sqrt(pi)2) + esqrt(pi) = esqrt(pi) - 2sqrt(pi)

Answered by Jordan R. Maths tutor

6521 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the straight line perpendicular to 3x+5y+6=0 that passes through (3,4)


Solve for -pi < x < pi: tanx = 4cotx + 3


Find the partial fraction decomposition of the expression: (4x^2 + x -64)/((x+2)(x-3)(x-4)).


Find dy/dx when y=(3x-1)^10


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences