Find the solutions of the equation 3cos(2 theta) - 5cos(theta) + 2 = 0 in the interval 0 < theta < 2pi.

3cos^2(theta) - 3sin^2(theta) - 5cos(theta) + 2 = 0

3cos^2(theta) + 3cos^2(theta) - 3 - 5cos(theta) + 2 = 0

6cos^2(theta) - 5cos(theta) - 1 = 0

delta = 25 + 24 = 49

cos(theta) = (5 - 7)/12 = -1/6 or cos(theta) = 1

theta = 0 or arccos(-1/6) or 2pi - arccos(-1/6) or 2pi

Answered by Piotr W. Maths tutor

4874 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given y=x^2(1+4x)^0.5, show that dy/dx=2x(5x+1)/((1+4x)^0.5)


A curve has equation y = f(x) and passes through the point (4, 22). Given that f'(x) = 3x^2 - 3x^(1/2) - 7, use integration to find f(x), giving each term in its simplest form


Find all solutions to the equation 8sin^2(theta) - 4 = 0 in the interval 2(pi) < (theta) < 4(pi)


Why does integration by parts work?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences