A curve has the equation y=sin(x)cos(x), find the gradient of this curve when x = pi. (4 marks)

Option 1 - Differentiate using product rule giving dy/dx = cos2(x) - sin2(x). (2 marks) Subbing in x as pi (1 mark) then gives (-1)+ (0). Therefore the gradient is 1 (1 mark).  Option 2 - Initially changing sin(x)cos(x) into (sin2x)/2 (1 mark) using double angle identities, then using the chain rule to differentiate to cos(2x) (2 marks), finally subbing in x = pi for the answer of 1 (1 mark).

MD
Answered by Mark D. Maths tutor

6407 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 1+ln(x) with respect to x


The complex numbers Z and W are given by Z=3+3i and W=6-i. Giving your answers in the form of x+yi and showing how you clearly obtain them, find: i) 3Z-4W ii) Z*/W


Solve int(ln(x)dx)


Differentiate f(x)= x^3 + x^(1/3)-2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning