A curve has the equation y=sin(x)cos(x), find the gradient of this curve when x = pi. (4 marks)

Option 1 - Differentiate using product rule giving dy/dx = cos2(x) - sin2(x). (2 marks) Subbing in x as pi (1 mark) then gives (-1)+ (0). Therefore the gradient is 1 (1 mark).  Option 2 - Initially changing sin(x)cos(x) into (sin2x)/2 (1 mark) using double angle identities, then using the chain rule to differentiate to cos(2x) (2 marks), finally subbing in x = pi for the answer of 1 (1 mark).

MD
Answered by Mark D. Maths tutor

6074 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can you tell if a function is even or odd?


Find all solutions to the equation 8sin^2(theta) - 4 = 0 in the interval 2(pi) < (theta) < 4(pi)


What is differentiation and how is it done?


Given that d/dx(cosx)=-sinx show that d/dx(secx)=secx(tanx)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences