By using an integrating factor, solve the differential equation dy/dx + 4y/x = 6x^-3 (6 marks)

Answer : y = 3/x+ c/x Integrating factor is 4/x (1 mark) => I = eintegral (4/x) dx (1 mark) => I = x(1 mark). Using the formula, d/dx (xy) = 6x (1 mark)=> x4y = integral(6x)dx (1 mark for integrating). Rearranging gets to answer of y=3/x+ c/x4. Where c is an arbitary constant (1 mark)

MD
Answered by Mark D. Further Mathematics tutor

6434 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Write down the equations of the three asymptotes and the coordinates of the points where the curve y = (3x+2)(x-3)/(x-2)(x+1) crosses the axes.


z = 50 / (3+4i). What is z in a+bi form?


Explain the process of using de Moivre's Theorem to find a trigonometric identity. For example, express tan(3x) in terms of sin(x) and cos(x).


If the complex number z = 5 + 4i, work out 1/z.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning