By using an integrating factor, solve the differential equation dy/dx + 4y/x = 6x^-3 (6 marks)

Answer : y = 3/x+ c/x Integrating factor is 4/x (1 mark) => I = eintegral (4/x) dx (1 mark) => I = x(1 mark). Using the formula, d/dx (xy) = 6x (1 mark)=> x4y = integral(6x)dx (1 mark for integrating). Rearranging gets to answer of y=3/x+ c/x4. Where c is an arbitary constant (1 mark)

Related Further Mathematics A Level answers

All answers ▸

A=[5k,3k-1;-3,k+1] where k is a real constant. Given that A is singular, find all the possible values of k.


Find the derivative of the arctangent of x function


Using the substitution u = ln(x), find the general solution of the differential equation y = x^2*(d^2(y)/dx^2) + x(dy/dx) + y = 0


Prove that (AB)^-1 = B^-1 A^-1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences