A line runs between point A(5,9) and B(11,1). Find the equation of the line. Point C lies on the line between A and B. The line with equation 2y=3x+12 also crosses through point C. Find the x coordinate of Point C.

For the first part it would be a good idea to sketch out the graph. Then using the formula 'change in y/change in x' find the gradient of the line (-4/3). You can then either use the formula y=mx+c and put in one of the points and gradient to find c or use the formula y-y1=m(x-x1) with one of the points. The equation of the line is =-(4/3)x + (47/3)

For the second part it again might be helpful to add to the sketch. Use simultaneous equations set the equations equal to one another and solve for x=58/17

Answered by Amelia T. Maths tutor

2617 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the coordinates of the point of intersection of the lines y = 5x - 2 and x + 3y = 8.


Of the following 4 equations, 3 of them represent parallel lines. Which is the odd one out?


How would you differentiate f(x) = 2x(3x - 1)^2 using the chain rule?


Given that y > 0, find ∫((3y - 4)/y(3y + 2)) dy (taken from the Edexcel C4 2016 paper)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences