A line runs between point A(5,9) and B(11,1). Find the equation of the line. Point C lies on the line between A and B. The line with equation 2y=3x+12 also crosses through point C. Find the x coordinate of Point C.

For the first part it would be a good idea to sketch out the graph. Then using the formula 'change in y/change in x' find the gradient of the line (-4/3). You can then either use the formula y=mx+c and put in one of the points and gradient to find c or use the formula y-y1=m(x-x1) with one of the points. The equation of the line is =-(4/3)x + (47/3)

For the second part it again might be helpful to add to the sketch. Use simultaneous equations set the equations equal to one another and solve for x=58/17

AT
Answered by Amelia T. Maths tutor

3008 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Simplify (5-root3)/(5+root3)


How do I sketch the graph y = (x^2 + 4*x + 2)/(3*x + 1)


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


X=4x^2 + 5x^7 - sin(3x) find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning