Solve these simultaneous equations. x^2+y^2=9, x-y+3=0

Rearrage so you have x+3=y, and x+y=9. Substitute the equation into another so you have x2+(x+3)2=9. Expand the brackets so that you have  x2+x2+6x+9=9. Then you rearrange so it's all on one side of the equation and equal to zero you will then have 2x2+6x=0 you can the divide by two so you have x2+3x=0. You then have to factorise so you have x(x+3)=0. This means you now know the value of x, it is either -3 or 0. You then substitute those values int either one of the two equations (usually the easier one) so you now have y=3 when x=0 and y=0 when x=-3. 

Answered by Adam B. Maths tutor

5104 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are n sweets in a bag. 6 of the sweets are orange. The rest of the sweets are yellow. Hannah takes a random sweet from the bag. She eats the sweet. Hannah then takes at random another sweet from the bag. She eats the sweet. The probability that H


y is inversely proportional to x. y = 0.04 when x = 80. Find the value of y when x = 32.


What are the differences between arithmetic and geometric sequences?


Solve the following simultaneous equations to find the values of x and y: 3y - 7x = 15 & 2y = 4x + 12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences