Solve these simultaneous equations. x^2+y^2=9, x-y+3=0

Rearrage so you have x+3=y, and x+y=9. Substitute the equation into another so you have x2+(x+3)2=9. Expand the brackets so that you have  x2+x2+6x+9=9. Then you rearrange so it's all on one side of the equation and equal to zero you will then have 2x2+6x=0 you can the divide by two so you have x2+3x=0. You then have to factorise so you have x(x+3)=0. This means you now know the value of x, it is either -3 or 0. You then substitute those values int either one of the two equations (usually the easier one) so you now have y=3 when x=0 and y=0 when x=-3. 

Answered by Adam B. Maths tutor

4523 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve algebraically the simultaneous equations x^2 + y^2 = 25 and y - 3x = 13


Prove that the difference between the squares of two consecutive odd numbers is a multiple of 8.


Sam is a bodybuilder. He currently weighs 90kg, but is aiming to be at 130kg in the next four months. Every month, he puts on 8% of his weight. Does he reach his target?


The equation of a quadratic curve is y=x^2+ax+b. The points (6,-4) and (4,-6) lie on this curve. Find the co-ordinates of the turning point of the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences