Solve these simultaneous equations. x^2+y^2=9, x-y+3=0

Rearrage so you have x+3=y, and x+y=9. Substitute the equation into another so you have x2+(x+3)2=9. Expand the brackets so that you have  x2+x2+6x+9=9. Then you rearrange so it's all on one side of the equation and equal to zero you will then have 2x2+6x=0 you can the divide by two so you have x2+3x=0. You then have to factorise so you have x(x+3)=0. This means you now know the value of x, it is either -3 or 0. You then substitute those values int either one of the two equations (usually the easier one) so you now have y=3 when x=0 and y=0 when x=-3. 

AB
Answered by Adam B. Maths tutor

5174 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the Simultaneous Equation: 2x + 3y = 15 and 5x + 4y = 13


given that f(x) = x^4 + 2x, find f'(x)


Write x^2+4x-12 in the form (x+a)^2+b where a and b are constants to be determined.


Find the area of the rectangle, in cm, with width 4x and length (y+5). Then calculate the area for x = 7 and y = 8.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences