Answers>Maths>IB>Article

Let f (x) = sin(x-1) , 0 ≤ x ≤ 2 π + 1 , Find the volume of the solid formed when the region bounded by y =ƒ( x) , and the lines x = 0 , y = 0 and y = 1 is rotated by 2π about the y-axis.

Draw a rough sketch of the graph of f(x) = sin(x-1) to get an idea of what the region looks like. Realise that the normal volume of revolution for the area between x axis and the f(x) is given by V = pi* integral( f(x)f(x) * x dx) Look at the rough sketch of the graph and realise that in this case the area enclosed is the area under the graph but in the other coordinate i.e. area between y-axis and f(x). So the coordinates in the volume formula are reversed. Therefore, use the formula V=pi integral( x * x dy) x=arcsin(y)+1 V=pi* integral( (arcsin(y)+1) * (arcsin(y)+1) * dy) where the limits of integral are from y=0 to y=1 (look at the y coordinate limits of the enclosed graph) So this is now reduced to a simple integral problem which can be solved on the graphical calculator (recommended) or done the hard way using integeration by expanding the square and doing integeration by parts multiple times. V = 8.20

AS
Answered by Ankur S. Maths tutor

6921 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

A team of four is chosen from six married couples. If a husband and wife cannot both be on the team, in how many ways can the team be formed?


Consider the infinite geometric sequence 25 , 5 , 1 , 0.2 , ... (a) Find the common ratio. (b) Find (i) the 10th term; (ii) an expression for the nth term. (c) Find the sum of the infinite sequence.


Talk about the relation between differentiability and continuity on a real function and its derivative.


Given the function f(x)=λx^3 + 9, for λ other than zero, find the inflection point of the graph in terms of λ. How does the slope of the line tangent to the inflection point changes as λ varies from 0 to 1?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning