What is the equation of the tangent to the circle (x-5)^2+(y-3)^2=9 at the points of intersection of the circle with the line 2x-y-1=0

Teh points of intersection can be found by subbing in y=2x-1 to the equation of the circle. (x-5)2+(2x-1-3)2=5x2-26x+33=9 so we have 5x2-26x+24=0. Solving the quadratic equation gives x1=4 and x2=1.2. If x=4 we have two corresponding points on the circle: (4-5)2+(y-3)2=9 giving y1=3+2sqrt(2) or y2=3-2sqrt(2). The equation of the corresponding tangent can be found in various ways for instance by implicit differentiation of the equation of the circle: 2x-10+2ydy/dx-6dy/dx=0 so we have dy/dx=(2x-10)/(6-2y) is the slope of the tangent. At the first intersection point: subbing in x=4 and y=3+2sqrt(2) gives slope=sqrt(2)/4. So the equation of the tangent line is sqrt(2)/4*(x-4)+y-3-2sqrt(2)=0. At the second intersection point x=4 and y=3-2sqrt(2) gives slope=-sqrt(2)/4. So the equation of the tangent line is -sqrt(2)/4*(x-4)+y-3-2*sqrt(2)=0. We have one last case left to examine if x=1.2, but subbing this in to the equation of the circle there is no sufficent y.

Answered by Tutor67416 D. Maths tutor

2802 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Exponential Growth Equations


Maths


Find where the curve 2x^2 + xy + y^2 = 14 has stationary points


A cubic curve has equation y x3 3x2 1. (i) Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences