First, we must rearrange to give 2tan(θ) = 5x. Differentiate both sides with respect to x: 2sec2(θ)dθ/dx = 5 Use identity sin2(θ) + cos2(θ) = 1, dividing through by cos2(θ), to get 2(1+tan2(θ))dθ/dx=5. From earlier, we know that tan(θ) = 5x/2, so substituting gives 2(1+25x2/4) dθ/dx= 5 dθ/dx = 5/(2+25x2/2)