How would I differentiate y=2(e^x)sin(5x) ?

We can see that we have the product of two different functions, and so we need to use the product rule. We will separate the function and label each part u and v for clarity. So we let u = 2ex and let v = sin(5x), where y =uv we now recall the product rule: d(uv)/dx = ud(v)/dx + vd(u)/dx now we simply differentiate u and v separately and plug them into our formula, remembering how to differentiate exponentials and using the chain rule to differentiate sin(5x). du/dx = 2ex and dv/dx = 5cos(5x) so we now have dy/dx = (2ex)(5cos(5x)) + (sin(5x))(2ex) to simplify and make our answer look a bit nicer, we could take out a factor of 2ex to get 2ex(5cos(5x) + sin(5x))

Answered by Scott P. Maths tutor

4321 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the line that is perpendicular to the line 3x+5y=7 and passes through point (-2,-3) in the form px+qy+r=0


Find the values of k for which the equation (2k-3)x^2-kx+(k-1) has equal roots


The curve C has the equation y = 2x^2 -11x + 13. Find the equation of the tangent to C at the point P (2, -1).


Find the x co-ordinate of stationary point of the graph y=5x^3 +3x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences