How would I differentiate y=2(e^x)sin(5x) ?

We can see that we have the product of two different functions, and so we need to use the product rule. We will separate the function and label each part u and v for clarity. So we let u = 2ex and let v = sin(5x), where y =uv we now recall the product rule: d(uv)/dx = ud(v)/dx + vd(u)/dx now we simply differentiate u and v separately and plug them into our formula, remembering how to differentiate exponentials and using the chain rule to differentiate sin(5x). du/dx = 2ex and dv/dx = 5cos(5x) so we now have dy/dx = (2ex)(5cos(5x)) + (sin(5x))(2ex) to simplify and make our answer look a bit nicer, we could take out a factor of 2ex to get 2ex(5cos(5x) + sin(5x))

Answered by Scott P. Maths tutor

3982 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the equation of the tangent to the circle x^2 + y^2 + 10x + 2y + 13 = 0 at the point (-3, 2)


Use implicit differentiation to find dy/dx of the equation 3y^2 + 2^x + 9xy = sin(y).


By integrating, find the area between the curve and x axis of y = x*exp(x) between x = 0 and x = 1


How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences