x is an integer such that ‎1≤x≤9, Prove that 0.(0x)recurring=x/99

r=0.0.x.

r=0.0x0x0x0x....

100r=x.0x0x0x     (1)

10,000r=x0x.0x0x0x      (2)

(2) - (1):  9,900r=x00

r=x00/9,990        r=x/99

EE
Answered by Ellie E. Maths tutor

13438 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Completing the square of 2x^2 - 8x + 7 = 0


Simplify (8x^2 + 36x)/(2x + 9) and explain why it is an even expression.


Talil is going to make some concrete mix. He needs to mix cement, sand and gravel (1: 3:5) by weight. Talil wants to make 180 kg of concrete mix. He has 15 kg of cement, 85 kg of sand, 100 kg of gravel. Does he have enough to make the concrete?


The Tour de France is 2162miles long. A cyclist knows his average speed his 12.37 miles/hour from his previous races. For the Tour de France the cyclist knows he will cycle for 10 hours a day. Estimate how many days it will take him to complete the race.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning