x is an integer such that ‎1≤x≤9, Prove that 0.(0x)recurring=x/99

r=0.0.x.

r=0.0x0x0x0x....

100r=x.0x0x0x     (1)

10,000r=x0x.0x0x0x      (2)

(2) - (1):  9,900r=x00

r=x00/9,990        r=x/99

Answered by Ellie E. Maths tutor

11861 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve: x^2 + x - 12 = 0


Find the value of x in the equation x^2 - 2x + 1 = 0


Solve the equations x-y=1 and 5x-3y=13


Kieran, Jermaine and Chris play football. Kieran has scored 8 more goals than Chris. Jermaine has scored 5 more goals than Kieran. Altogether they have scored 72 goals. How many goals did Jermaine score?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences