x is an integer such that ‎1≤x≤9, Prove that 0.(0x)recurring=x/99

r=0.0.x.

r=0.0x0x0x0x....

100r=x.0x0x0x     (1)

10,000r=x0x.0x0x0x      (2)

(2) - (1):  9,900r=x00

r=x00/9,990        r=x/99

EE
Answered by Ellie E. Maths tutor

13469 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

There are 30 balls in the bag, 10 of which are blue. Adam takes 2 balls out of the bag without a replacement and calculated that there is a probability of 0.2 of both balls being blue. What percentage error did he make compared to the true probability?


How to do add or subtraction fractions?


Insert a pair of brackets into this question to make it correct 2 + 5 x -6 = -42


How do you know when to use sin, cos and tan in trigonometry?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning