Prove the trigonometric identity tan^2(x)+1=sec^2(x)

 We can start with the identity sin2(x)+cos2(x)=1 If we divide through the equation by cos2(x), we get: sin2(x)/cos2(x) + cos2(x)/cos2(x) = 1/cos2(x) If we look at the left hand side of the equation: sin2(x)/cos2(x) is equal to tan2(x), and cos2(x)/cos2(x) is equal to 1 (as it is divided through by itself), the left hand side becomes tan2(x) +1 Now if we look at the right hand side of the equation: 1/cos2(x) is equal to sec2(x) Putting both sides of the equation together, we get tan2(x) +1=sec2(x)

Answered by Charlotte W. Maths tutor

13158 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve C has the equation x^3 +x^2 -10x +8. Find the points at which C crosses the x axis.


Integrate 3x^2 + 4/3 x^5 with respect to x


express the following fraction in the form of m + (n)^1/2. the fraction is ((3*(5)^1/2)^2 - 7)/(3 + 7*(5)^1/2). where m,n are real numbers.


Using the "complete the square" method, solve the following x^2 +4x - 21 =0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences