Prove the trigonometric identity tan^2(x)+1=sec^2(x)

 We can start with the identity sin2(x)+cos2(x)=1 If we divide through the equation by cos2(x), we get: sin2(x)/cos2(x) + cos2(x)/cos2(x) = 1/cos2(x) If we look at the left hand side of the equation: sin2(x)/cos2(x) is equal to tan2(x), and cos2(x)/cos2(x) is equal to 1 (as it is divided through by itself), the left hand side becomes tan2(x) +1 Now if we look at the right hand side of the equation: 1/cos2(x) is equal to sec2(x) Putting both sides of the equation together, we get tan2(x) +1=sec2(x)

CW
Answered by Charlotte W. Maths tutor

17944 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Solve the following equation by completing the square: x^2 + 6x + 3 = 0.


What is the angle between the position vectors a and b, where a = (6i - j + 3k) and b = (-4i + 2j + 10k)?


What is a Tree Diagram?


f(x) = 2x3 – 5x2 + ax + 18 where a is a constant. Given that (x – 3) is a factor of f(x), (a) show that a = – 9 (2) (b) factorise f(x) completely. (4) Given that g(y) = 2(33y ) – 5(32y ) – 9(3y ) + 18 (c) find the values of y that satisfy g(y) = 0, givi


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning