Factorise 6x^2 + 7x + 2

6x^2 + 7x + 2 can be written in the form ax^2 + bx + c. In order to factorise this I use the following method which can be used to factorise similar equations. Multiply 'a' and 'c' to get ac (here this is 6 x 2 = 12). Next, you have to look for factors of ac (12) which sum to get the coefficient for b. So here we have 3 and 4 (factors of 12) which add to 7. You can then write the equation in the following form: 6x^2 + 7x + 2 = (6x + 3)(6x + 4)/6,  Similarly, for any equation this would be ax^2 + bx + c = (ax + m)(ax + n)/a, where m and n are the coefficients which you found earlier. Using this, you simplify the right hand side by canceling down to remove the action of dividing by 6. (6x + 3)(6x + 4)/6 => (2x + 1)(6x + 4)/2 => (2x + 1)(3x + 2) which is the complete factorisation of 6x^2 + 7x + 2. 

Related Further Mathematics GCSE answers

All answers ▸

In the expansion of (x-7)(3x**2+kx-3) the coefficient of x**2 is 0. i) Find the value of k ii) Find the coefficient of x. iii) write the fully expanded equation in terms of x


How can I find the equation of a straight line on a graph?


Find the definite integral of f(x) = 12/(x^2+10x+21) with limits [-1,1]. Give your answer to 2 decimal places.


Solve the following simultanious equations: zy=28 and 2z-3y=13


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences