How to Integrate ln(x)?

Integrating this expression is a simple trick. We use integration by parts. For this we need a function we can integrate and a function we can differentiate. We know how to differentiate ln(x) which is 1/x. Looking at the expression we could see it as 1*ln(x) hence we can use 1 as our other funciton of x. Using the integration by parts formula given in the formula booklet we get INT(ln(x)) = xln(x) - INT(1) = x(ln(x) -1)

JR
Answered by Jordan R. Maths tutor

6986 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the integral of ln(x)


Find the intergral of 2x^5 - 1/4x^3 - 5 with respect to x.


Find the integral of 1/(x-5) with respect to x


A curve has equation -2x^3 - x^2 + 20x . The curve has a stationary point at the point M where x = −2. Find the x-coordinate of the other stationary point of the curve.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning