How to Integrate ln(x)?

Integrating this expression is a simple trick. We use integration by parts. For this we need a function we can integrate and a function we can differentiate. We know how to differentiate ln(x) which is 1/x. Looking at the expression we could see it as 1*ln(x) hence we can use 1 as our other funciton of x. Using the integration by parts formula given in the formula booklet we get INT(ln(x)) = xln(x) - INT(1) = x(ln(x) -1)

JR
Answered by Jordan R. Maths tutor

6654 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

I'm supposed to calculate the differential of f(x)= sin(x)*ln(x)*(x-4)^2 using the product rule. I know what the product rule is but I can't split this into two bits that are easy to differentiate. How do I do it?


Core 3: Find all the solutions of 2cos(2x) = 1-2sin(x) in the interval 0<x<360


solve the differential equation dy/dx = 6xy^2 given that y = 1 when x = 2


Find the area R under the curve when f(x)=xcos(x) between the limits x=0 and x=2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning