How to Integrate ln(x)?

Integrating this expression is a simple trick. We use integration by parts. For this we need a function we can integrate and a function we can differentiate. We know how to differentiate ln(x) which is 1/x. Looking at the expression we could see it as 1*ln(x) hence we can use 1 as our other funciton of x. Using the integration by parts formula given in the formula booklet we get INT(ln(x)) = xln(x) - INT(1) = x(ln(x) -1)

Answered by Jordan R. Maths tutor

5547 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to prove that (from i=0 to n)Σi^2= (n/6)(n+1)(2n+1), by induction.


A curve has the equation (x+y)^2 = xy^2. Find the gradient of the curve at the point where x=1


The region below the curve y = e^x + e^(-x) and the lines x = 0, x = ln4 is rotated 2π radians about the x-axis. Find the volume of the resulting solid.


Use the identity for sin(A+B) to find the exact value of sin 75.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences