Christine has more money than David. If Christine gave David £30, then they would have the same amount. If David gave Christine £33, then Christine would have twice as much money as David. How much money does each person have?

We need to start by translating the sentences into algebraic equations. There are 2 unknowns, Christine’s money and David’s money. Let Christine’s money= x Let David’s money = y If Christine gave David £30, then they would have the same amount: x-30=y+30 If David gave Christine £33, then Christine would have twice as much money as David: X+33=2(y-33) x+33=2y-66 We now have two equations. Both equations contain the same 2 unknowns (x and y). We can solve these equations simultaneously. x=£219=Christine’s Money y=£159=David’s Money I intend to demonstrate the final part on whiteboard.

Answered by Ben C. Maths tutor

2878 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do I solve simultaneous equations?


Why is the area of a triangle 1/2 * b * h?


Consider an isosceles triangle ABC, where AB=AC=1, M is the midpoint of BC, and <BAM=<CAM=x. Use trigonometry to find an expression for BM and by finding BC^2, show that cos2x = 1 - 2(sinx)^2.


Solve this simultaneous equation: 5x+6y=3 and 2x-3y=12.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences