Where does the quadratic formulae come from?

The general form of a quadratic equation is, ax2 +bx + c = 0. If we divide all terms by a we get, x2 +(b/a)x + c/a = 0. then by completing the square we get (x+(b/2a))+ c/a - b2/4a2 = 0 which rearanged is, (x+(b/2a))2 = b2/4a-  c/a. We can combine the 2 terms on the left hand side of this equation into, b2-4ac which gives the overall equation,

(x+(b/2a))2 = (b2-4ac) / 4a2. If we then square root both sides we have x+b/2a = sqrt(b2-4ac)/2a. By rearanging again we get x= (sqrt(b2-4ac)-b) / 2a. Which looks like the quadratic formulae, there is a subtlety which is that a square root can be either + or -, i.e. the sqrt(4) is 2 or -2 therefore for our quadratic formulae we have to consider both the postivie and negative terms.

Therefore our overall result reduces to the formulae you are familiar with x= (-b ± sqrt(b2-4ac)) / 2a

BO
Answered by Benjamin O. Maths tutor

3911 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given that y=ln([2x-1/2x=1]^1/2) , show that dy/dx= (1/2x-1)-(1/2x+1)


Find the gradient of the tangent to the curve y=4x^2 - 7x at x = 2


A curve has equation y = 6ln(x) + x^2 -8x + 3. Find the exact values of the stationary points.


Find the cross product of vectors a and b ( a x b ) where a = 3i + 6j + 4k and b = 6i - 2j + 0k.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning