Solve the differential equation: dy/dx = 6x^2 + 4x + 9

dy/dx = 6x2 + 4x + 9

dy = (6x2 + 4x + 9) dx 

integrating gives:

y= (6x3/3) + (4x2/2) + 9x + c

y= 2x3 + 2x2 + 9x + c

If given boundary conditions of y(0)=0 then 

0 = 2(0)3 + 2(0)2 +9(0) +c 

therefore c=0 

so y= 2x3 + 2x2 + 9x

JH
Answered by Jack H. Maths tutor

10745 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate 2e^(3x^2+6x)


A line runs between point A(5,9) and B(11,1). Find the equation of the line. Point C lies on the line between A and B. The line with equation 2y=3x+12 also crosses through point C. Find the x coordinate of Point C.


The curve C has the equation: 16y^3 +9x^2y-54x=0, find the x coordinates of the points on C where dy/dx = 0


How do you find stationary points of an equation, eg. y=x^2+3x+2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences