Answers>Maths>IB>Article

Determine the coefficient of y^3 in the binomial expansion (2x-3y)^4

Using the method of binomial expansion (which I will cover in more detail) we get

(2x-3y)^4 = + 1(2x)^4(3y)^0  -  4(2x)^3(3y)^1  +  6(2x)^2(3y)^2  -  4(2x)^1(3y)^3  +  1(2x)^0(3y)^4  =

= 16x^4  -  96x^3 y  +  216x^2 y^2  -  216x y^3  +  81y^4

Note that we can get the coefficients 1, 4, 6, 4, 1  from Pascal's triangle, and since in the given example there is subtraction (2x-3y), there is a minus sign before each term that has 3y in an odd factor (^1, ^3 etc). You can simply remember to add a minus sign before every second term.

Now we see that in the term where y is in factor 3 as asked in the question (this is the term -216xy^3), the coefficient is -216. This is the answer we are looking for!

DM
Answered by Davids M. Maths tutor

11524 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

Find the Cartesian equation of plane Π containing the points A(6 , 2 , 1) and B(3, -1, 1) and perpendicular to the plane Π2 (x + 2y - z - 6 = 0).


The function f has a local extreme at point (1,4). If f''(x)=3x^2+2x, then find f(0)?


In an arithmetic sequence, the first term is 2, and the fourth term is 14. a) Find the common difference, d. b) Calculate the sum of the first 14 terms, S14.


Given that sin(x) + cos(x) = 2/3, find cos(4x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning